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Abstract In non-experimental research, data on the same population process may
be collected simultaneously by more than one instrument. For example, in the present
application, two sample surveys and a population birth registration system all collect
observations on first births by age and year, while the two surveys additionally collect
information on women’s education. To make maximum use of the three data sources,
the survey data are pooled and the population data introduced as constraints in a
logistic regression equation. Reductions in standard errors about the age and birth-
cohort parameters of the regression equation in the order of three-quarters are obtained
by introducing the population data as constraints. A halving of the standard errors
about the education parameters is achieved by pooling observations from the larger
survey dataset with those from the smaller survey. The percentage reduction in the
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standard errors through imposing population constraints is independent of the total
survey sample size.

Keywords Combining data · Constrained estimation · Fertility

1 Introduction

Statistical methods for using population information to increase the efficiency of
sample-survey-based estimates have a long history of development in statistics
(Deming and Stephan 1942; Ireland and Kullback 1968). More recently, they
have been applied to economic and demographic data (Imbens and Lancaster 1994;
Handcock et al. 2000). In demographic applications, the availability of population
counts of both vital events (in registration-system data) and of population charac-
teristics (in population censuses and inter-censal estimates) increases the scope for
realizing efficiency gains. Moreover, because prediction is frequently a goal in demo-
graphy, efficiency gains may be especially beneficial.

The alternatives of using either population or survey data alone each have their
disadvantages. Use of population data alone limits the amount of socio-economic in-
formation that can be incorporated into the analysis. Data from large-scale, general
purpose surveys are also increasingly considered undesirable, either for their lack of
a longitudinal dimension or for their lack of certain variables needed for specific ap-
plications. As a result, an increasing reliance on data from small, specialist surveys
has been seen in demography. Small survey data, however, have major disadvantages
with respect to statistical efficiency. They may also be subject to bias due to attri-
tion and other forms of non-response. These are the concerns that have led to the
development of methods for combining population or large-scale data with small-
sample survey data in economics (Hellerstein and Imbens 1999; Ridder and Moffitt
2007).

In previous applications to fertility estimation, Handcock et al. (2000, 2005)
introduced and implemented a constrained maximum likelihood estimator (MLE) in a
logistic regression model. They demonstrated large efficiency gains first in estimating
the intercept parameter by constraining survey estimates to an overall fertility rate
(Handcock et al. 2000), and second in estimating coefficient parameters by constrai-
ning to the fertility rates of population subgroups (Handcock et al. 2005). In the first
case, the reduction in the variance about the intercept parameter resulted in a 50%
reduction in the variance about the predicted birth probabilities. In the second case,
even larger reductions in standard errors about the parameter estimates for popula-
tion subgroup coefficients were achieved. They referred to these coefficients as being
“directly constrained” by the population data. Consistent with Imbens and Lancas-
ter’s (1994) simulation results, however, Handcock et al. (2005) found that no more
than trivial gains in efficiency may be expected for regression parameters that are not
directly constrained by population data.

The present study builds on those earlier studies by addressing the problem of
how to improve efficiency of estimation of regression parameters that are not directly
constrained by population data. It does so by pooling data across surveys while still

123



Population constraints on pooled surveys 521

constraining to population data. In an application to first births by education in Italy,
observations from a larger, general-purpose survey dataset (the 1998 Multiscopo sur-
vey) are pooled with observations from a smaller, specialist dataset (the 1995/1996
Fertility and Family Survey, or FFS). We consider only first childbearing after age
25 to focus the analysis on the process of entry to motherhood after completion of
studies, and to illustrate the utility of population constraints for ages at which sur-
vey observations of women who have not yet given birth are relatively few. Women
born in the early 1950s are compared to women born ten years later in the early
1960s, thus providing examples of estimation respectively for complete and censored
hazards.

Even though the two surveys are conducted three years apart, their retrospective
fertility histories overlap for all years up to the survey year of the FFS. This allows
for the potential to realize gains in statistical efficiency by simply pooling sample
observations across the two surveys. We first derive a basic theoretical result on the
relationship between survey sample sizes and the variance-reducing effect of inclu-
sion of population constraints: that the proportionate reduction in variance from the
inclusion of population constraints is independent of the size of the survey sample.
This implies that pooling observations across sample surveys will not alter the rela-
tive efficiency gains achieved through applying population constraints. This result is
confirmed empirically by comparing the gains between unconstrained and constrained
estimation when using the smaller survey dataset only with the gains when pooling
the larger survey observations with those of the smaller survey.

The population data, however, directly constrain survey estimation only of the
relationship of age and cohort to first birth. The relationship of education to first births
is not directly constrained, and so no significant improvements in its estimation are
achieved by adding population constraints. The pooling of surveys in a constrained
MLE, however, achieves substantial increases in the efficiency of the estimates of the
relationship of education to first births.

The remainder of the article is organized as follows. In Sect. 2, we first describe
the sample survey data and evaluate the comparability of the two survey datasets
against population data. We then describe the method of constrained MLE as applied
to the problem of estimating first birth probabilities using these survey and population
data sources. We also derive the main analytical result relevant to pooling the survey
datasets with constrained estimation: that the proportionate reduction in variance of
the regression parameter estimates is independent of the total sample size. In Sect. 3,
we compare the results obtained under constrained MLE on the pooled survey datasets
with results from estimators that either ignore the population data or that forego the
opportunity to pool the survey data. Both non-parametric and parametric specifications
of the relationship of first births to age are used in the alternatives that ignore the
population data. Finally, Sect. 4 follows.

2 Data and method

In this section, we first describe the three separate data sources to be eventually combi-
ned in the estimation. We note here their comparability in terms of universes and topics
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covered. Second, we compare the three data sources empirically. We note the compara-
bility of their estimates of first birth probabilities by cohort across all three sources and
of the estimates of the distribution of women by education and cohort across the two
survey sources. Third, we describe a logistic regression model that may be estimated
with survey data alone or with combinations of the survey and population data.

2.1 The sample and population data

Italy has two survey datasets that collected women’s fertility histories in the 1990s: the
smaller, 1995/1996 Italian Fertility and Family Survey (“FFS”, De Sandre et al. 2000);
and the larger, 1998 Italian Multipurpose Survey (“Multiscopo”, ISTAT 2000). As its
name implies, the FFS was designed explicitly for fertility analysis and for other sub-
jects related to family formation and change. The FFS included approximately 4,800
female sample members aged 20–49 at survey date. From the fertility history asked
of all sample members, we use here only the year of birth of a woman’s first live-born
child, if any, born up to the end of the year (1994) before the survey year. The FFS also
recorded highest educational qualification obtained, coded to ISCED77 (International
Standard Classification of Education, OECD 2003) categories. We coded “high edu-
cation” for women with any tertiary education qualification (ISCED77 codes 5 and
above).

The 1998 Multiscopo is a large, general purpose survey. Its sample included more
than 20,000 households with approximately 54,000 individuals. A fertility history was
collected for all female sample members aged 15 and over. We use here only the year of
birth of a woman’s first live-born child, if any, born up to the end of the year before the
survey year (1997). The Multiscopo also included a question on highest educational
qualification obtained, from which we were able to code “high education” in the same
way as for the FFS.

From both the FFS and Multiscopo, we use data from female respondents born in
the years 1951–1955 and 1961–1965, and create person-years of exposure to first birth
from age 25 and above. We define age throughout the analysis using the “generation”
definition of number of years attained this calendar year. On average this is half a
year younger than the “age at last birthday” definition. The women born in the 1950s
have only just completed their childbearing years by survey date, assuming age 44
to be the oldest age of childbearing. The FFS data, collected in 1995/1996, allow for
exposure to childbearing only to age 42. The Multiscopo data, collected in 1998, allow
for exposure up to age 44. For the 1960s cohort, the FFS data allow for exposure to
childbearing to age 32. We use the Multiscopo data for exposure to childbearing up
to age 34.

For the entire period of our analyses, the Italian birth registration system collected
details including age of mother and how many children the mother has previously
given birth to. Using these data, Giorgi (1993) calculated first birth probabilities by
single-year cohort. We use these probabilities, subsequently updated by Giorgi to
1997, as our population-level estimates of first-birth probabilities by single-year age.
We calculated the geometric mean of individual birth-year-specific probabilities to
convert them into five-year birth-cohort averages.
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2.2 Population representativeness of the two survey datasets

Handcock et al. (2005) showed that even when the sample survey data deviate from
being exactly representative of the population for which the constraint data are
obtained, the constrained MLE will improve estimation compared to using an uncons-
trained alternative estimator. Bias in the survey data in this case will also be reduced
by incorporating the exact population constraints, but will not be eliminated (see also
Hellerstein and Imbens 1999). We now show that in the present application, the two
survey datasets sample in an approximately unbiased way from the same population,
and therefore that the issue of estimation from non-representative survey data will not
play a major role in the analysis.

Sample sizes and comparisons of the variables of interest between the sample and
birth-registration data, and between sample and Labour Force Survey (LFS) estimates,
are presented in Table 1. FFS and Multiscopo sample sizes are of female respondents
born in the years 1951–1955 and 1961–1965, respectively. There are approxima-
tely three times as many women from both cohorts in the Multiscopo (2,100 and
2,690, respectively) as in the FFS (760 and 840, respectively). The three extra years of
observation per woman in the Multiscopo as compared to the FFS raise the ratio to
approximately four times as many person-years of observation in the Multiscopo (see
below). For the LFS, we use published reports and special tabulations that are not
accompanied by confidence intervals or sample sizes (ISTAT 1996, 2005), and the-
refore treat them as if they are from population data. The effect is to make it more
likely to reject the null hypothesis of no difference between the FFS and Multiscopo
estimates and those of the LFS. Given the very large overall sample size of the LFS
(320,000 individuals each trimester in 1985 and 200,000 in 1995, ISTAT 1996), this
bias is likely to be small.

Comparisons of education at survey date indicate small deviations only of the survey
estimates from population data, and between the surveys. Compared to the LFS of
1995, both the FFS and Multiscopo have significantly higher proportions of women
with higher-education qualifications, at around 11%, but differences between the FFS
and Multiscopo are small and not significant. Surprisingly, given international trends
towards increased female participation in higher education, no statistically significant
change is seen across the two Italian cohorts born ten years apart in either the FFS
or Multiscopo surveys (statistical test results not shown). To check whether this lack
of observed change is due to the different ages of the women from the two cohorts
at survey date (early-to-mid 30s for the 1961–1965 cohort versus early-to-mid 1940s
for the 1951–1955 cohort), we compared also the 1951–1955 cohort’s proportion
with higher qualifications 10 years before, in the 1985 LFS. While the 1995 LFS
recorded almost identical percentages of women with a higher education between the
1951–1955 cohort (9.4%) and the 1961–65 cohort (9.3%), only 8.0% of women from
the 1951–1955 cohort had a higher qualification in 1985. The real growth in higher
education across cohorts implied by the LFS, however, is still small: from 8.0% of the
1951–1955 cohort to 9.3% of the 1961–1965 cohort.

The survey data on births are also similar to estimates from population data, and the
FFS and Multiscopo data are similar to each other. Compared to the birth-registration
data, both the FFS and Multiscopo have similar proportions still childless at age 24
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(the beginning of the year the woman attained age 25). The FFS proportions appear
slightly lower, than either the Multiscopo or birth registration data, and the deficit is
statistically significant compared to both the Multiscopo and birth registration esti-
mates for the 1961–1965 cohort. The FFS and Multiscopo exhibit similar differen-
tials by education in proportions childlessness at age 24 (much higher among “high
education” women) and by cohort (substantially higher for the 1960s cohort than for
the 1950s cohort). The lower overall childlessness in the FFS’ 1961–1965 cohort is
seen to be due to the “no high education” group.

The first-birth probabilities by single-year age over all the observed ages of the study
(from age 25 to the oldest age available for each cohort in the respective surveys) are
compared between the two survey data sources and the population data source in
Fig. 1a and b. From the population data, it is clear that the true pattern of age-specific
first-birth hazard is smooth. It is also clear that a major change in the pattern occurred
between the 1950s and 1960s cohorts. The hazard is generally lower, and the age
pattern later, for the 1960s cohort. The hazard slopes upward until age 30 for the
1960s cohort, while it descends for the 1950s cohort already from age 26. At age 25,
the first-birth probability was 0.139 for the 1950s cohort, but only 0.085 for the 1960s
cohort. By age 30, the probabilities were similar: 0.111 for the 1950s cohort and 0.104
for the 1960s cohort. By age 34, the probability for the 1960s cohort (0.078) exceeded
slightly that for the 1960s cohort (0.069).

From Fig. 1a and b, both sample surveys appear to be approximately representative
of the population with respect to both levels and cross-cohort changes. Statistical tests
of differences between the surveys for the full age, cohort, and education relationship
to first birth were conducted by adding a full set of interactions for survey (Multiscopo
against a reference FFS), using a polynomial specification for the relationship of age
to the first-birth probability. The addition of the Multiscopo dummy and interactions
of age, cohort, and education with this dummy resulted in an improvement in model fit
that was statistically significant at the p = 0.05 level, but with none of the individual
coefficients added for “Multiscopo” and interactions with “Multiscopo” being statisti-
cally significant (results available from the first author on request). This indicates again
that the two surveys are sampling from approximately the same population process.

Sampling fluctuations appear to be substantially greater in the smaller FFS esti-
mates than in the larger Multiscopo survey estimates, as would be expected given
their respective sample sizes. Fluctuations are especially large towards the oldest ages
observed for the 1960s cohort (see Fig. 1b). This is due to fewer single-year age birth
cohorts contributing exposed years just before survey date. For example, only the 1961
and 1962 cohorts attain age 32 in the FFS observation period. Thus the population
pattern of increasing first birth probabilities to age 30 followed by decreases thereafter
is not evident in the sample series.

2.3 Constrained maximum likelihood estimation and unconstrained alternatives

We specify a regression model whose dependent variable Y takes the value of 1 in
the year that a woman has her first live birth, and 0 in every year that she remains
childless. Let X be a vector of length p representing the values of the regressors.
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Fig. 1 a Italy 1951–1955 cohort first birth probabilities by source of data. b Italy 1961–1965 cohort first
birth probabilities by source of data

These may be fixed or time-varying. Let β = (βo, β1, . . . , βp) be a parameter vector
consisting of an intercept parameter β0 plus the p coefficient parameters corresponding
to each of the regressors in X . A discrete-time first-birth hazard function, where age
is the “duration” variable of the hazard, may then be specified as a binomial logistic
regression model (e.g., Maddala 1983). Under the logistic model, the birth probability
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P(Y = 1|X = x, β) is transformed through a log odds function that is linear in x :

log

[
P(Y = 1|X = x, β)

P(Y = 0|X = x, β)

]
= β0 + β1x1 + · · · + βpx p (1)

Denote the survey data by D = (yi , xi ), i = 1, . . . , n. These are person-year observa-
tions of women at ages at which they had not yet had a first birth at the beginning of the
year. The value yi is the realization of Y indicating a birth (yi = 1) or no birth (yi = 0)
and xi is the vector of length p of regressors for the i th person-year in the dataset.
The distribution of X may depend on some design parameter γ . We will assume that
the parameter space of γ and the parameter space of β are disjoint. The likelihood
function for the person-year data given the model of Eq. (1) can be written as:

L(β, γ ; y, x) =
n∏

i=1

P(Y = yi , X = xi |β, γ )

=
n∏

i=1

P(Y = yi |X = xi , β)P(X = xi |γ ) (2)

Because the parameter spaces of γ and β are disjoint, maximizing (2) with res-
pect to β is equivalent to maximizing L(β; y|x) = ∏n

i=1 P(Y = yi |X = xi , β).

Let In(β) be the expected Fisher information matrix for the parameter β. It is the

(p + 1) × (p + 1)matrix with ( j + 1, k + 1)th element −Eβ

[
∂2 log[L(β;y|x)]

∂β j ∂βk

]
,

j = 0, 1, 2, . . . , p and k = 0, 1, 2, . . . , p. If the survey data are all the information we
have, under standard regularity conditions, the estimated value β̂ that maximizes the
above likelihood is asymptotically unbiased and Gaussian with asymptotic variance
VS , where VS is the inverse of In(β) (Casella and Berger 2002). We refer to β̂ and VS

as the unconstrained model estimates.
To introduce the constrained model, we first introduce notation for the specific

set of variables in our application, age a, birth cohort c, and education e. Education
takes the value of e = 1 for women with a higher education qualification and e=0
otherwise. Recall that age and cohort are available in both the survey and population
data, while education is available in the survey data only. The probability of a first
birth for each age and cohort, independent of education, φa,c ≡ P(Y = 1|a, c), is
known for each observed combination of age and cohort from the population data
{φa,c}. These data are exactly those plotted in Fig. 1a and b (the “Birth registration”
lines). In this constrained regression model, they are the constraint values.

The constraint function additionally includes the education variable. Let P(Y =
1|a, c, e) be the probability of a first birth for a woman of age a, from cohort c and with
education e. The probability P(Y = 1|a, c) can be expressed as the weighted sum of
the probability of a first birth for a woman with a higher education qualification P(Y =
1|a, c, 1) and the probability of a first birth for a woman with no higher education
qualification P(Y = 1|a, c, 0), where the weights are given by the proportions of
women of that age and cohort with a higher qualification, π(e = 1|a, c), and without
one, 1 − π(e = 1|a, c). Both P(Y = 1|a, c, 1) and P(Y = 1|a, c, 0) are derivable as
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predicted values from the logistic regression model (1). As the model depends onβ, this
induces a dependence of these probabilities on β. For given values of π(e = 1|a, c),
the following constraint function C(β) may therefore be defined:

φa,c = C(β) = P(Y = 1|a, c, 1;β)π(e = 1|a, c)
+P(Y = 1|a, c, 0;β)[1 − π(e = 1|a, c)] (3)

The constrained maximum likelihood estimator β̂con that solves Eq. (2) subject to
constraint function (3) is still asymptotically efficient, unbiased and Gaussian.
However, while the asymptotic variance in the unconstrained version is given by VS ,
in the constrained version the asymptotic variance of β̂con is:

Vcon = VS − VS H T [H VS H T ]−1 H VS (4)

where H is the gradient matrix of C(β) with respect to β. H is the m × (p + 1) matrix
with (l, j + 1)th element ∂Cl (β)

∂β j
, j = 0, 1, 2, . . . , p parameters and l = 1, 2, . . . , m

constraints. Since the second term in expression (4) is positive definite, the inclusion
of the population information always leads to an improvement in the estimation of β.
That is, the constrained estimator β̂con is, on average, closer to the true value of β than
is the unconstrained estimator β̂. In particular, the standard error of the estimator in the
version using the population information will always be less than the unconstrained
estimator that ignores it. This is the key result of the constrained maximum likelihood
model.

A further result of (4) of particular importance for the present study is that the
asymptotic ratio of the variances of the constrained to unconstrained parameters is
independent of the survey sample size. The relevance of this derives from the increase
in total sample size achieved by pooling observations across the two surveys. Because
individuals in the surveys are sampled at random, independence holds. Consequently,
when X is fixed and known, the expected Fisher information for the sample, In(β),
can be represented as nI (β), where I (β) is the expected Fisher information for a given
individual. When X is random, the expected Fisher information for (β, γ ) is In(β, γ ),
a block diagonal matrix because γ and β are disjoint. Therefore In(β) and the ex-
pected information for γ, In(γ ), are independent and can be easily extracted from
In(β, γ ). In both the fixed and random X cases, Vs = I −1

n (β) = [nI (β)]−1 = 1
n V ,

where V = I −1(β). As a result, the asymptotic variance matrix of the constrained and
unconstrained parameters can be represented as 1

n (V−V H T [H V H T ]−1 H V ) and 1
n V ,

respectively. The ratio of the constrained to unconstrained variances is therefore
asymptotically independent of sample size. Hence, the percentage reduction in the
asymptotic standard errors of the regression parameters will be the same for all sample
sizes.

The form of constraint equation (3) is very general in demographic applications.
It expresses an overall rate P as a weighted sum of covariate-dependent (“specific”)
rates P(0) and P(1). The weights are given by the population distribution of the
covariate {π, 1 − π}. This population distribution may be approximated by the sample
distribution with the loss of some efficiency, the analytical result for this loss being
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derived in Hellerstein and Imbens (1999). In the present application, while sample
survey data are used to approximate the population distribution of the regressors,
we treat this distribution as if it were calculated from population data. This allows
us to apply a pre-written constrained maximization routine (the SAS PROC NLP,
SAS Institute 1997) to the likelihood (2) and constraint function (3), and thereby
obtain the constrained version of the variance–covariance matrix (4).

Finally, supplied with the sample survey data are sample weights to account for
differential probability of selection. We use these weights throughout the analysis.
Before pooling the two surveys for the regression estimation, we normalize to a mean
of 1 the sample weights of each of the two surveys separately. These normalized
weights then form part of the likelihood function (2).

3 Results

The results are divided into two subsections. In the first subsection, we present parame-
ter estimates and predicted birth probabilities under identical regression specifications
between the unconstrained and constrained models. This allows us to compare stan-
dard errors for coefficients with and without constraints. We compare unconstrained
and constrained models estimated with data from only one survey with models esti-
mated with data that are pooled across the two surveys. This shows the incremental
benefits respectively from pooling surveys and from constraining survey estimation
through the inclusion of population data.

Following this, we present a second unconstrained regression specification that
parameterizes the age function as polynomial, allowing for a smoothing of the first
birth relationship with age. The parametric approach to hazard estimation is a common
solution to the problem of high sampling variability with survey data. We show here
that this parametric approach is nevertheless inferior to the approach that smoothes
the first birth relationship to age by using the population data as formal constraints on
the regression estimation.

3.1 Constrained and unconstrained model estimates under identical specifications

In Table 2, constrained and unconstrained parameter estimates and standard errors
are presented for the logistic regression of first birth on age, cohort, and education.
Separate results are reported using the small (FFS) survey only, the large (Multiscopo)
survey only, and the FFS and Multiscopo surveys with their observations pooled.
The function of age and cohort to first birth is specified using single-year ages (that is,
completely non-parametric), while we parameterize (with a second-order polynomial)
the education by age interaction. This is because we have exact population information
about the age and cohort relationships, but must rely on survey data for information
about the education relationship.

Consistent with Eq. (4) in the statistical theory presented above, all standard errors
in the constrained version are as low as, or lower than, the corresponding standard
errors of the unconstrained version. The standard errors of the age parameters are seen
to be reduced by very large amounts by constraining survey-based estimates to the
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overall population values, generally by 75% or more as compared to the unconstrained
version, and sometimes by as much as 90 percent. Only for the age parameters, cohort-
by-age parameters, and intercept, however, are the reductions in standard errors other
than of negligible magnitudes. That is, for none of the parameters for education and
its interaction with age and cohort is there a non-negligible reduction in the standard
error. This makes intuitive sense, as the constraints offer exact information about the
relationship of age to first childbearing, but no information about how this relationship
differs by education.

A further result of Eq. (4) noted in the statistical theory description above is confir-
med empirically in Table 2: the ratio of the variances of the constrained to uncons-
trained parameters is independent of the survey sample size. The asymptotic result is
that the percentage reduction in the standard errors of the regression parameters from
the unconstrained to the constrained versions will be equal. This is seen to be closely
approximated in practice for the FFS and the Multiscopo. Thus even while the sample
size of the Multiscopo is approximately four times as high as the sample size of the
FFS, there is no difference in the proportionate reduction of the standard error about
the first-birth model coefficient estimates. Importantly, the standard errors for the poo-
led sample are reduced by similar amounts in percentage terms as are the standard
errors for either of the two surveys alone. For example, for the age-40 coefficient, the
standard error for estimation with the FFS is reduced from an unconstrained-model
0.976 to a constrained-model 0.277, an approximately 75% reduction. When estima-
ting the unconstrained and constrained models with the pooled FFS and Multiscopo,
the standard error falls from 0.311 to 0.081, again an approximately 75% reduction.

While the population constraints have a negligible effect on the standard errors of the
coefficients for education, and for the interaction of education with age and cohort,
pooling the two samples results in substantial reductions in these standard errors.
These reductions are seen equally in the constrained and unconstrained estimates,
although we focus on the constrained estimates. Compared with using the FFS alone,
the standard error for the parameter for the main effect (at age 25 for the 1951–1955
cohort) of having a higher education qualification is halved (from 0.337 to 0.178).
Compared with using the Multiscopo alone, the standard error for the same parameter
is reduced from 0.213 to 0.178. Similarly large reductions by adding the Multiscopo
data to the FFS data, and much smaller but still substantial reductions by adding the
FFS data to the Multiscopo data, are seen in the standard errors for the parameters for
higher-education interactions with cohort and age.

The practical advantages of pooling survey data under population-constrained esti-
mation are best seen by graphing the predicted first birth probabilities by age, cohort,
and education. These predicted probabilities for the estimation that uses the pooled
survey data with the population information as constraints to the survey estimation
are first presented in Fig. 2a and b. We consider these our best estimates of the rela-
tionship of age, cohort, and education to first-birth, since they take into account all
available survey and population data. Confidence intervals for these estimates, as for
all the predicted probabilities presented in this article, were generated using a boots-
trap procedure (Efron and Tibshirani 1994) with 1,000 iterations. The 95% confidence
interval shown in the graphs consists of the 5th percentile and 95th percentile of the
bootstrapped estimates.
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Fig. 2 a 1951–1955 cohort constrained estimation with pooled (FFS and Multiscopo) survey data. b 1961–
1965 cohort constrained estimation with pooled (FFS and Multiscopo) survey data. c 1951–1955 cohort
constrained estimation with small (FFS) survey. d 1961–1965 cohort constrained estimation with small
(FFS) survey

The 1950s cohort’s predicted first-birth probabilities show highly differentiated
patterns by education (see Fig. 2a). The downward-sloping profile from age 26 seen
in the birth registration data is modeled for women without a high education, while
the pattern for women with a high education is modeled as sloping steeply upwards
to a peak first-birth probability at age 31. The modeled pattern follows the observed
probabilities closely for women with no high education. The observed probabilities
for women with high education qualifications, however, fluctuate much more around
the predicted line. This is expected given that relatively few women in the cohort, and
therefore also in the sample, have a higher qualification.

Some similar remarks may be made about the 1960s cohort’s constrained estimates
versus the observed data and overall first-birth probabilities in the population data
(see Fig. 2b). Up to about age 30, the fit of the lines to the observed data appears as
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Fig. 2 continued

if it were a simple smoothing of the sample data. After age 30, however, the effect of
the constraint is clearly much stronger than seen either before age 30 or in the case
of the 1950s cohort. The constraint pulls both education-specific lines downwards
so that they are on average much lower than their observed sample points. For the
higher-education women, for example, little evidence of a downward slope emerging
by age 34 is seen in the sample points. The implication of the predicted education-
specific lines after age 30 is that the observed sample points may be biased upwards.
This may be because, for example, non-response is differentially low for women who
had children in the year before survey date. The population data, however, are not
subject to response differentials, and therefore are expected to be unbiased. Using
them in the constrained estimation therefore will correct for bias in the survey data.

We present in Fig. 2c and d the predicted values for the constrained estimator using
only the smaller, FFS dataset. The main objective here is to show, by contrast with
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Fig. 2a and b, how pooling survey data may lead to substantial improvements espe-
cially in estimating those parts of the relationship for which population information
is not available. While a similar relationship of education to first birth is seen un-
der constrained estimation using the FFS only, the confidence intervals around the
predicted probabilities are much wider. For example, while the confidence intervals
for “High Education” and “No High Education” women over 30 in the 1950s cohort are
non-overlapping only between the ages 32 and 35 for the FFS, they are non-overlapping
from ages 31 to 38 with the combined FFS and Multiscopo surveys.

The largest improvements achieved by using all of the available data are again seen
for the 1960s cohort. Here, the constrained estimator with the FFS data results in the
higher educated women’s first birth hazard approaching but never exceeding the hazard
for women without a higher-education qualification (see Fig. 2d). This contrasts with
the cross-over at about age 31 seen for the constrained estimator that pools the FFS
and Multiscopo data (Fig. 2b). The failure of the FFS constrained estimator to model
the education cross-over is due to a combination of its observations going only up to
age 32 and to its much smaller sample size. Note that at age 32, no first births were
observed in the FFS sample (see the “High Education, observed” points on the plot).

3.2 Parametric and non-parametric specifications of age in unconstrained estimation

The researcher who uses sample data only is unlikely to specify the non-parametric,
single-year age dummy model used in constrained estimation. Instead, a smooth rela-
tionship of the first-birth probability with age is likely to be imposed parametrically.
We now illustrate graphically that both the non-parametric and parametric approaches
will be inferior to the approach that uses the population data as formal constraints
to the estimation. For the parametric version, a polynomial age specification regres-
sion with linear, squared, and cubed terms for the reference, 1950s cohort, and with
linear and squared interaction terms for the 1960s cohort is estimated (parameter esti-
mates available from the first author on request). The non-parametric version uses the
specification from Table 2 above. The two versions are intended to give the range of
likely alternative estimation strategies (from completely non-parametric to the simplest
parametric specification) in the case that no statistical method for the incorporation of
known population information is available to the researcher. The predicted values for
the non-parametric and parametric unconstrained specifications, in all cases using the
pooled survey data, are shown in Fig. 3a–d.

The population line is included in the graphs to show how estimates from the sample
data, whether using non-parametric or parametric specifications, may be inconsistent
with the overall population values. This contrasts with Fig. 2a and b, where such
inconsistency is prevented by the method of constraining to the population values.
The predicted values for the unconstrained non-parametric, single-year age dummy
specifications shown in Fig. 3a and b generate jagged lines for both the education-
specific probability series. False local peaks in the hazard, for example, occur at age
40 for the 1950s cohort and at age 27 for the 1960s cohort. This is clearly attributable
to sampling error, as the population function is known from population data to be
smooth across these ages.
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Fig. 3 a 1951–1955 cohort unconstrained estimation with pooled (FFS and Multiscopo) survey data,
single year age dummy (“Non-parametric”) specification. b 1961–1965 cohort unconstrained estima-
tion with pooled (FFS and Multiscopo) survey data, single age dummy (“Non-parametric”) specification.
c 1951–1955 cohort unconstrained estimation with pooled (FFS and Multiscopo) survey data, polyno-
mial (“Parametric”) age specification. d 1961–1965 cohort unconstrained estimation with pooled (FFS and
Multiscopo) survey data, polynomial (“Parametric”) age specification

Predicted values are presented in Fig. 3c and d for the parametric version. For
the 1950s cohort (see Fig. 3c), the unconstrained polynomial age specification lines
are very similar in pattern to those seen for the constrained estimate of Fig. 2a.
There is a similar cross-over point, at about age 29, between the higher-qualified and
not-higher-qualified women. This parametric specification appears to model reasona-
bly well the relationship seen in the sample data. For the 1960s cohort, however, it
produces predicted values that exceed the population values for both higher-qualified
and not-higher-qualified women after age 30 (see Fig. 3d). Such deviations from a
known population relationship are possible because the parametric smoothing has no
effect on the overall level of the hazard.

The effect of the population constraint in Fig. 2a through d is now clearer when
contrasted with Fig. 3a through d. While the patterns of first-birth probabilities in
Fig. 2a through d appear to be similar to those that would emerge from a parametric
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Fig. 3 continued

or non-parametric smoothing of the two education-specific series, the two education-
specific lines always surround the population constraint line. This is a result of the
population line’s being a weighted sum of the two education-specific lines at each
single-year age. This is most obvious at the point at which the education-specific lines
cross, which is forced to be the point at which they are equal to the known overall
first-birth probability in the population (the constraint line). Both the parametric and
non-parametric versions of the unconstrained estimation, in contrast, allow drift in the
two education-specific hazards from the known overall population hazard of first birth
by age and cohort.

4 Summary and conclusions

Previous demographic and economic studies have demonstrated large efficiency gains
through combining population data with survey data in regression estimation. These
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gains, however, have been limited to the intercept parameter and the coefficients for
variables for which population data are also available. The present study demonstrated
how this limitation can be overcome by pooling data from more than one survey sample
and constraining estimates from the pooled surveys to population data.

Full use of available population data was achieved by imposing population
constraints by single-year age, parity, and cohort. This introduced an exact, base-
line relationship of age to first childbearing separately for two five-year birth cohorts.
Observations from a second, large-scale survey (the 1998 Multiscopo) pooled with
observations from a specialist demographic survey (the 1995/1996 FFS) allowed for
much greater efficiency in the estimation of the relationship of a key socio-economic
variable (educational attainment) to first birth by age. As expected, however, negligible
reductions in the standard errors for the parameters for education and its interaction
with age and cohort were achieved by the imposing of population constraints. The
intuition for this is that the constraints offer exact information about the relationship
of age and cohort to first birth, but no information about how this relationship differs
by the education levels of cohort members.

Additional information about how first birth differs by education was instead
obtained by pooling the data from the small survey with observations on women
from the same cohorts in a larger survey in which the education variable and fertility
histories were also present. Here, the efficiency gains over using the smaller survey
alone are equivalent to increasing the latter’s sample by the number of observations in
the larger survey. Because the larger, Multiscopo survey has approximately four times
the person-year sample size of the smaller, FFS, the standard errors about the educa-
tion coefficients were approximately half those estimated using the FFS data alone.
Pooling the survey data, moreover, does nothing to reduce the effectiveness of using
population constraints. Both theoretical and empirical results were presented showing
that the percentage reduction in the standard errors achieved by applying population
constraints is independent of the survey sample size, and therefore equally effective
when surveys are pooled.

The structures of the survey datasets and population data used in the present study
have permitted a largely straightforward statistical treatment. The two survey datasets
used here have been treated as though they sample from the same population, and
contain the same variables needed to estimate the relationships of interest. In one
practically important way, the larger dataset also contributed variables not present in
the smaller survey. These were from observations of women at ages 43 and 44 in the
1950s cohort and at ages 33 and 34 in the 1960s cohort. Their practical significance is
that they complete the ages of reproduction for the 1950s cohort, and extend predictions
over ages at which first birth hazards are high, especially for women with higher
education, in the 1960s cohort. This presents no statistical complication for hazard
modeling, since adding ages of observation does no more than relax the degree of
right-censoring of first-birth exposure. Pooling data from surveys with more general
differences in their regressor variables is also possible, but involves greater statistical
challenges (see Ridder and Moffitt 2007).

The population data used here were treated as exact, in the senses both of being
unbiased and having negligible sampling error. This assumption will not hold for all
population data collections. The Italian statistical system for the collection of births
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data was itself overhauled in 1999, such that information on mother’s age and parity
is no longer available in a single, complete-enumeration source (LoConte et al. 2003).
This means that only by using data collections that include sampling error will it
be possible to construct age- and parity-specific population constraints from 1999
onwards. This complicates, but does not eliminate, the possibilities for improving
survey estimates. Hellerstein and Imbens (1999) show this by deriving a variance
estimator that adjusts for sampling error in “population” constraints from large-scale
sample survey data.
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